HiDUP PENUH DENGAN KEJUTAN
kembang api2





Monday, October 12, 2015

MACAM MACAM PENYIMPANAN DATA DAN FUNGSI NYA

Komputer mempunyai perangkat keras untuk media penyimpanannya. Memori eksternal adalah perangkat keras untuk melakukan operasi penulisan, pembacaan dan penyimpanan data, di luar komponen utama yang telah disebutkan di atas. Contoh dari memori eksternal adalah floppy disk, harddisk, cd-rom, dvd.

Hampir semua memori eksternal yang banyak dipakai belakangan ini berbentuk disk/piringan sehingga operasi data dilakukan dengan perputaran piringan tersebut. Dari perputaran ini, dikenal satuan rotasi piringan yang disebut RPM (Rotation Per Minute). Makin cepat perputaran, waktu akses pun semakin cepat,namu makin besar juga tekanan terhadap piringan sehingga makin besar panas yang dihasilkan. Untuk media berkapasitas besar dikenal beberapa sitem yang ukuran RPM nya sebagai berikut :

• 3600 RPM Pre-IDE

• 5200 RPM IDE

• 5400 RPM IDE/SCSI

• 7200 RPM IDE/SCSI

• 10000 RPM SCSI

Setiap memori eksternal memiliki alat baca dan tulis yang disebut head (pada harddisk) dan side (pada floppy). Tiap piringan memiliki dua sisi head/side, yaitu sisi 0 dan sisi 1. Setiap head/side dibagi menjadi lingkaran lingkaran konsentris yang disebut track. Kumpulan track yang sama dari seluruh head yang ada disebut cylinder. Suatu track dibagi lagi menjadi daerah-daerah lebih kecil yang disebut sector.



Jenis Penyimpanan Data ;



FLOOPY DISK

Floppy disk drive yang menjadi standar pemakaian terdiri dari 2 ukuran yaitu 5.25” dan 3.5” yang masing-masing memiliki 2 tipe kapasitas Double Density (DD) dan High Density (HD).

Floppy disk 5.25” kapasitasnya adalah 360 Kbytes (untuk DD) dan 1.2 Mbytes (untuk HD). Sedangkan floppy disk 3.5” kapasitasnya 720 Kbytes (untuk DD) dan ntuk HD). Kapasitas yang dapat ditampung oleh floppy disk memang cenderung kecil, apalagi jika dibandingkan dengan kebutuhan transfer dan penyimpanan data yang makin lama makin besar. Floppy disk hanya dapat menyimpan file teks, karena keterbatasan kapasitas. Walaupun demikian, penulisan pada floppy disk dapat dilakukan berulang-ulang, walaupun memakan waktu yang relatif lama.



ZIP drive

ZIP drive berasal dari lomega. ZIP drive berukuran kecil 1,47 inchi. ZIP drive ini memperbaiki keterbatasan kapasitas yang dimiliki oleh floopy disk. Perangkat ini terdiri dari floopy drive dan cartridge floopy khusus, yang mapu menampung sampai 100MB data. Dengan kapasitas sebesar ini, dapat memungkinkan orang menyimpan file grafik dan mutimedia.



Hardisk

Sebagaimana disket, hardisk juga meyimpan data dalam bentuk track, sektor, dan cluster. Sistem operasi komputer mencatat sektor berdasarkan cluster-nya. Sistem operasi Windows memberi nomor unik pada setiap cluster dan mencatat alamat file di hardisk menggunakan tabel alokasi file virtual (VFAT, Virtual File Allocation Table). VFAT merupakan salah satu metode untuk menyimpan dan mengetahui alamat file sesuai cluster yang digunakan. Oleh sebab itu, VFAT berisi setiap nilai pada setiap cluster yang menjelaskan lokasi disk tempat cluster berada. Terkadang sistem operasi menganggap sebuah cluster sebagai cluster yang sedang dipakai, meskipun pada saat itu cluster tersebut tidak berisi file apapun. Hal ini dinamakan lost cluster, dan pengguna dapat membebaskan cluster tersebut (yang berarti dapat menambah ruang hardisk) dengan memakai utilitas ScanDisk di Windows.



Hardisk Nonremovable (Hardisk Internal)

Hardisk nonremovable internal adalah hardisk yang tetap berada di dalam unit sistem komputer dan digunakan untuk menyimpan hampir semua program dan sebagian besar file data. Hardisk jenis ini terdiri dari beberapa piringan logam atau kaca (glass) berdiameter 1 sampai 5,25 inci (umumnya 3,5 inci), tersusun dalam bentuk kumparan dan berisi data pada kedua sisi piringannya. Head baca/tulis yang terletak di setiap sisi piringan, diatur oleh lengan penggerak yang bergerak maju mundur untuk mencari lokasi yang tepat pada piringan. Seluruh komponen ini terlindung dalam pembungkus anti-udara sehingga bisa terbebas dari kotoran-kotoran semacam debu.

Kapasitas hardisk nonremovable bervariasi antara 40 sampai 300 gigabyte. Bahkan ada pula hardisk yang sudah mencapai satuan terabyte yang setara dengan ribuan gigabyte. Satu gigabyte kira-kira setara dengan tulisan sepanjang 20.000 halaman, sedangkan file video dan suara biasanya berukuran 10 megabyte atau lebih.

Putaran piringan hardisk jauh lebih cepat dibandingkan disket, sehingga data/program pada hardisk dapat diakses lebih cepat. Kecepatan hardisk dinyatakan dengan satuan revolusi per detik (rpm) yang berkisar antara 5.400 sampai 7.200 rpm. Kecepatan putaran disket hanya 360 rpm, sedangkan hard drive sebesar 7.200 rpm (kira-kira setara dengan kecepatan 300 mil per jam).

Hard Drive Portabel (Hardisk Eksternal dan Removable)

Terdapat dua jenis hardisk portabel, antara lain :



Hardisk Eksternal, Hardisk eksternal adalah hardisk yang bisa ditempatkan di luar unit sistem dan tetap berpembungkus anti udara. Melalui kabel, hardisk dihubungkan ke unit sistem komputer ke port FireWire, USB atau port lain. Kapasitas minimalnya 250 gigabyte.

Hardisk Removable, Hardisk removable atau hard-drive catridge terdiri dari satu atau dua piringan dilengkapi head baca/tulisnya, terlindung dalam pembungkus kaku serta dapat dimasukkan ke drive catridge pada unit sistem mikrokomputer. Catridge, dengan kapasitas 80 gigabyte atau lebih, biasanya dipakai untuk mem-backup dan memindahkan file-file data berukuran besar, misalnya file spreadsheet atau desktop-publishing yang berukuran



CD-ROM

CD-ROM yang ada saat ini umumnya terbuat dari resin (polycarbonate) dan dilapisi permukaan yang sangat reflektif seperti alumunium. Informasi direkam secara digital sebagai lubang-lubang mikroskopis pada permukaan yang reflektif. Proses ini dilakukan dengan menggunakan laser yang berintensitas tinggi. Permukaan yang berlubang ini kemudian dilapisi oleh lapisan bening. Informasi dibaca dengan menggunakan laser berintensitas rendah yang menyinari lapisan bening tersebut sementara motor memutar disk. Kemudian Intensitas laser tersebut berubah setelah mengenai lubang-lubang tersebut kemudian terefleksikan dan dideteksi oleh fotosensor yang kemudian dikonversi menjadi data digital. Penulisan data pada CD-ROM hanya dapat dilakukan sekali saja. Walaupun demikian, optical disk ini memiliki keunggulan dari segi mobilitas. Bentuknya yang kecil dan tipis memudahkannya untuk dibawa kemana-mana.



DVD

(Digital VersatileDisc)Mulai tahun 1983 sistem penyimpanan data di optical disc mulai diperkenalkan dengan diluncurkannya Digital Audio Compact Disc. Sejak saat itulah teknologi penyimpanan pada optical disc berkembang. CD-ROM (Compact Disc Read Only Memory) adalah media untuk menyimpan data atau informasi lainnya dalam jumlah yang sangat besar (lebih dari 600 MegaByte). Jauh lebih besar jika kita bandingkan dengan floppy disk (1,4 MB)

DVD adalah generasi lanjutan dari teknologi penyimpanan dengan menggunakan media optical disc. DVD memiliki kapastias yang jauh lebih besar daripada CD-ROM biasa, yaitu mencapai 9 Gbytes. Teknologi DVD ini sekarang banyak dimanfaatkan secara luas oleh perusahaan musik dan film besar, sehingga menjadikannya sebagai produk elektronik yang paling diminati dalam kurun waktu 3 tahun sejak diperkenalkan pertama kali.

Perkembangan teknologi DVD-ROM pun lebih cepat dibandingkan CD-ROM. 1x DVD-ROM memungkinkan rata-rata transfer data 1.321 MB/s dengan rata-rata burst transfer 12 MB/s. Semakin besar cache (memori buffer) yang dimiliki DVD-ROM, semakin cepat penyaluran data yang dapat dilakukan.

DVD menyediakan format yang dapat ditulis satu kali ataupun lebih, yang disebut dengan Recordable DVD, dan memiliki macam-macam versi, yaitu : DVD-R for General, hanya sekali penulisan DVD-R for Authoring, hanya sekali penulisan DVD-RAM, dapat ditulis berulang kali DVD-RW, dapat ditulis berulang kali DVD+R, hanya sekali penulisan Setiap versi DVD recorder dapat membaca DVD-ROM disc.

Flash Disk

Flash Disk adalah media penyimpan dari floppy driveB jenis lain yang umumnya mempunyai kapasitas memori 128 MB s/d 64 GB, dengan menggunakan interface jenis USBC (Universal Serial Bus), sangat praktis dan ringan dengan ukuran berkisar 96 x 32 mm dan pada bagian belakang bentuknya agak menjurus keluar, digunakan untuk tempat penyimpanan baterai jenis AAA dan LCD (Untuk Fitur MP3, Voice Recording dan FM Tuner) dan terdapat port USB yang disediakan penutupnya yang berbentuk sama dengan body utamanya. Flash disk termasuk alat pemyimpanan data memory flash tipe NAND (Umumnya digunakan pada Kamera Digital), ada juga yang dikemas dalam ukuran kecil menjadi Compact Flash, SD-Card, MMC dan sejenisnya.

Blue Ray

Cakram Blu-ray (Blu-ray Disc disingkat BD) adalah sebuah format cakram optik untuk penyimpanan media digital termasuk video definisi tinggi. Nama Blu-ray diambil dari laser biru-ungu yang digunakan untuk membaca dan menulis cakram jenis ini. Cakram Blu-ray dapat menyimpan data yang lebih banyak dari format DVD yang lebih umum karena panjang gelombang laser

biru-ungu yang dipakai hanya 405 nm dimana lebih pendek dibandingkan laser merah, 650 nm yang dipakai DVD dan CD. Format saingan Blu-ray yaitu HD DVD juga menggunakan laser jenis yang sama. Cakram Blu-ray dapat menyimpan 25 GB pada setiap lapisannya dibandingkan dengan 4,7 GB pada DVD. Beberapa pabrik bahkan telah membuat cakram Blu-ray satu lapis dan dua lapis (50 GB) yang dapat ditulis ulang. Beberapa studio film yang mendukung format Blu-ray bahkan telah merilis atau mengumumkan akan merilis film pada cakram berkapasitas 50 GB.blue ray lebih pendek dari panjang gelombang laser memungkinkan untuk menyimpan lebih banyak informasi pada 12 cm CD / DVD ukuran disk. Minimum "spot size" di mana sebuah laser dapat terfokus dibatasi oleh difraksi, dan bergantung pada panjang gelombang dari cahaya dan kecepatan rana numerik dari lensa yang digunakan untuk fokus itu. Dengan penurunan panjang gelombang, meningkatkan kecepatan rana numerik 0,60-0,85 dan membuat penutup lapisan tipis agar terhindar dari efek optik yang tidak diinginkan, laser dapat difokuskan ke tempat yang lebih kecil. Hal ini memungkinkan lebih banyak informasi yang akan disimpan di daerah yang sama.

Fluorescent Multilayer DISK(FM DISK)

Fluorescent Multilayer Disc (FM Disc) adalah jenis Optical disk yang mampu menampung sampai 140 GB data sekaligus, dengan kecepatan baca data sampai 1 GB per detik.

FM Disc berbeda dengan kepingan yang beredar saat ini. Warnanya tidak keperakan atau keemasan, melainkan bening seperti sebuah plastik transparan biasa.



RAM (Random Access Memory)

RAM adalah memory tempat penyimpanan sementara pada saat komputer dijalankan dan dapat diakses secara acak atau random. Fungsi dari RAM adalah mempercepat pemprosesan data pada komputer. Semakin besar RAM yang dimiliki, semakin cepatlah komputer. Berikut adalah jenis-jenis dari RAM.

• RAM (Dynamic RAM) adalah jenis RAM yang secara berkala harus disegarkan oleh CPU agar data yang terkandung didalamnya tidak hilang.

• SDRAM (Sychronous Dynamic RAM) adalah jenis RAM yang merupakan kelanjutan dari DRAM namun telah disinkronisasi oleh clock sistem dan memiliki kecepatan lebih tinggi daripada DRAM. Cocok untuk sistem dengan bus yang memiliki kecepatan sampai 100 MHz.



Cache Memory

Cache Memory adalah memory yang berukuran kecil yang sifatnya temporary (sementara). Walaupun ukuran filenya sangat kecil namun kecepatannya sangat tinggi. Dalam terminologi hadware, istilah ini biasanya merujuk pada memory berkecepatan tinggi yang menjembatani aliran data antara processor dengan memory utama (RAM) yang biasanya memiliki kecepatan yang lebih rendah. Fungsi dari Cache Memory adalah sebagai tempat menyimpan data sementara atau intruksi yang diperlukan oleh processor. Secara gampangnya, cache berfungsi untuk mempercepat akses data pada komputer karena cache menyimpan data atau informasi yang telah di akses oleh suatu buffer, sehingga meringankan kerja processor.



ROM (Read Only Memory)

Pengertian, Jenis - Jenis dan Fungsi ROM (Read Only Memory). ROM merupakan singkatan dari Read Only Memory. ROM adalah perangkat atau peralatan proses yang terdapat di dalam CPU. ROM berisikan suatu program yang telah diterapakan oleh pembuat perangkat komputer dan keberadaan program ini tidak dapat diubah, ditambah, maupun dikurangi oleh pemakai Komputer. Isi ROM diperlukan pada saat computer dihidupkan. Perintah yang ada di dalam ROM sebagian akan

dipindahkan ke RAM. Di antara perintah dari ROM adalah perintah untuk membaca system operasi dari disk, perintah untuk mengecek semua peralatan yang ada di unit system, dan perintah untuk menampilkan pesan di layar. Isi ROM tidak akan hilang meskipun aliran listrik padam.





Monday, October 5, 2015

PENGERTIAN BUS,TOPOLOGI DAN JENIS NYA



Bus Sistem ( Arsitektur dan Organisasi Komputer)



A. Tentang Bus Sistem

System bus atau bus sistem, dalam arsitektur komputer merujuk pada bus yang digunakan oleh sistem komputer untuk menghubungkan semua komponennya dalam menjalankan tugasnya. Sebuah bus adalah sebutan untuk jalur di mana data dapat mengalir dalam komputer. Jalur-jalur ini digunakan untuk komunikasi dan dapat dibuat antara dua elemen atau lebih. Data atau program yang tersimpan dalam memori dapat diakses dan dieksekusi oleh CPU melalui perantara sistem bus.

Sebuah komputer memiliki beberapa bus, agar dapat berjalan. Banyaknya bus yang terdapat dalam sistem, tergantung dari arsitektur sistem komputer yang digunakan. Sebagai contoh, sebuah komputer PC dengan prosesor umumnya Intel Pentium 4 memiliki bus prosesor (Front-Side Bus), bus AGP, bus PCI, bus USB, bus ISA (yang digunakan oleh keyboard dan mouse), dan bus-bus lainnya.

Bus disusun secara hierarkis, karena setiap bus yang memiliki kecepatan rendah akan dihubungkan dengan bus yang memiliki kecepatan tinggi. Setiap perangkat di dalam sistem juga dihubungkan ke salah satu bus yang ada. Sebagai contoh, kartu grafis AGP akan dihubungkan ke bus AGP. Beberapa perangkat lainnya (utamanya chipset atau kontrolir) akan bertindak sebagai jembatan antara bus-bus yang berbeda. Sebagai contoh, sebuah kontrolir bus SCSI dapat mengubah sebuah bus menjadi bus SCSI, baik itu bus PCI atau bus PCI Express.

Berdasar jenis busnya, bus dapat dibedakan menjadi bus yang khusus menyalurkan data tertentu, contohnya paket data saja, atau alamat saja, jenis ini disebut dedicated bus. Namun apabila bus yang dilalui informasi yang berbeda baik data, alamat, dan sinyal kontrol dengan metode multipleks data maka bus ini disebut multiplexed bus. Kekurangan multiplexed bus adalah hanya memerlukan saluran sedikit sehingga menghemat tempat tapi kecepatan transfer data menurun dan diperlukan mekanisme yang komplek untuk mengurai data yang telah dimultipleks. Sedangkan untuk dedicated bus merupakan kebalikan dari multipexed bus.



Berikut Jenis-jenis Bus Berdasarkan Fungsi :

v Data Bus :

- Berfungsi untuk mentransfer data, membawa data dari dan ke perangkat atau periferal

- Terdiri atas beberapa jalur penghantar, 8, 16, 32 bahkan 64 bahkan lebih jalur paralel

- Data ditransmisikan dalam dua arah, yaitu dari CPU atau mikroprosesor ke unit memori atau modul I/O dan sebaliknya.

- Semakin lebar bus maka semakin besar data yang dapat ditransfer sekali waktu.

v Control Bus:

- Berfungsi untuk mensinkronkan proses penerimaan dan pengiriman data.

- Untuk mengatur memori atau port agar siap ditulis atau dibaca.

- Sinyal Kontrol: RD, WR, IO/M

- Sinyal Read dan write : untuk mengakses data ke dan dari perangkat

v Address Bus:

- membawa informasi untuk mengetahui lokasi suatu perangkat atau periferal

- Untuk memilih lokasi memori atau port yang akan ditulis atau dibaca

- Untuk menentukan rute data, bersumber dari mana, tujuannya ke mana.

- Bersifat searah, cpu memberikan alamat yang bertujuan untuk menentukan periferal mana yang dituju. Contoh memori mana yang dituju atau I/O mana yang dituju.

- Semakin besar bus alamat, akan semakin banyak range lokasi yang dapat dialamati.

- Jumlah alamat yang dapat dituju pada Bus alamat adalah sebanyak 2n. n jumlah jalur Bus alamat.



B. Perkembangan Bus Sistem

1. Omnibus

Sistem ini terdiri atas 96 buah lintasan sinyal yang terpisah, yang digunakan untuk membawa sinyal – sinyal kontrol, alamat maupun data. Arsitektur bus seperti PDP-8 ini nantinya digunakan oleh komputer – komputer modern

Omnibus merupakan bus tujuan umum yang terdiri dari 144 sinyal. Backplanes omnibus terdiri dari 1 atau lebih 10 backplanes slot dan biasanya quad lebar. Selanjutnya 8/A adalah pengecualian dari aturan dimana beberapa slot yang ditujukan untuk memori inti adalah lima lebar. Setiap slot tujuan umum dalam kartu teori dapat diposisikan dalam slot, hanya dibatasi oleh pertimbangan waktu dan kebisingan. Karena sifat tujuan umum bus, antar board sinyal yang dibuat dengan cara diletakkan diatas konektor tepi H851.

Omnibus (PDP-8) merupakan sistem bus yang diciptakan pada tahun 1964. Omnibus (PDP-8) memiliki ciri-ciri sebagai berikut :





· Diciptakan pada tahun 1964

· Merupakan minicomputer pertama

· Tidak mengharuskan ruangan ber-AC

· Ukurannya kecil

· Harga $16,000 $100k+ untuk IBM 360

· Embedded applications & OEM

· Menggunakan bus struktur

Omnibus terdiri dari 96 buah lintasan signal yang terpisah, yang digunakan untuk membawa signal-signal kontrol, alamat, dan data. Karena semua komponen-komponen sistem menggunakan bersama sejumlah lintasan signal, penggunaannya harus dikontrol oleh CPU. Omnibus tidak memerlukan air conditioned room.

PDP-8 adalah keberhasilan komersial pertama minicomputer , diproduksi oleh Digital Equipment Corporation (DEC) pada tahun 1960. PDP- 8 diperkenalkan pada tanggal 22 Maret 1965 dan terjual lebih dari 50.00 sistem. PDP-8 adalah komputer pertama yang dijual secara luas di DEC PDP rangkaian komputer (PDP-5 awalnya tidak dimaksudkan untuk tujuan-umum komputer). Versi awal PDP-8 dirancang oleh Edson de Castro , yang kemudian mendirikan Data General .

Awal model PDP-8 (informal dikenal sebagai "8 Straight-") menggunakan transistor logika dioda , yang dikemas pada flip chip kartu, dan memiliki ukuran seperti lemari es minibar. Hal ini diikuti oleh PDP-8/S model desktop, dimana digunakannya satu-bit serial ALU pelaksanaan. PDP-8 / S lebih kecil, lebih murah, akan tetapi jauh lebih lambat dari pada aslinya PDP-8. Kemudian sistem (PDP-8 / I dan / L, PDP-8 / E, / F, dan / M, dan PDP-8 / A) kembali ke implementasi yang lebih cepat, lengkap dengan paralel tetapi yang digunakan jauh lebih murah TTL MSI logika. Sebagian besar PDP-8 muncul pada era ini. PDP-8 / E termasuk jenis umum dan dianggap baik karena begitu banyak jenis perangkat I / O yang tersedia untuk itu. Hal ini sering dikonfigurasi sebagai komputer tujuan umum.

Komersial terakhir PDP-8 model pada tahun 1979 disebut "CMOS-8" dan menggunakan kustom CMOS mikroprosesor. Berikut adalah versi PDP-8 :

· PDP-8

· LINC-8

· PDP-8 / S

· PDP-8 / I

· PDP-8 / L

· PDP-12

· PDP-8 / E



TOPOLOGI BUS



bus : Pada topologi Bus, kedua unjung jaringan harus diakhiri dengan sebuah terminator. Barel connector dapat digunakan untuk memperluasnya. Jaringan hanya terdiri dari satu saluran kabel yang menggunakan kabel BNC. Komputer yang ingin terhubung ke jaringan dapat mengkaitkan dirinya dengan mentap Ethernetnya sepanjang kabel. Linear Bus: Layout ini termasuk layout yang umum. Satu kabel utama menghubungkan tiap simpul, ke saluran tunggal komputer yang mengaksesnya ujung dengan ujung. Masing-masing simpul dihubungkan ke dua simpul lainnya, kecuali mesin di salah satu ujung kabel, yang masing-masing hanya terhubung ke satu simpul lainnya. Topologi ini seringkali dijumpai pada sistem client/server, dimana salah satu mesin pada jaringan tersebut difungsikan sebagai File Server, yang berarti bahwa mesin tersebut dikhususkan hanya untuk pendistribusian data dan biasanya tidak digunakan untuk pemrosesan informasi. Instalasi jaringan Bus sangat sederhana, murah dan maksimal terdiri atas 5-7 komputer. Kesulitan yang sering dihadapi adalah kemungkinan terjadinya tabrakan data karena mekanisme jaringan relatif sederhana dan jika salah satu node putus maka akan mengganggu kinerja dan trafik seluruh jaringan.



1. Keuntungan topologi bus



· Hemat kabel, karena pada topologi bus hanya menggunakan kabel tunggal dan terpusat sebagai media transmisi sehingga tidak membutuhkan banyak kabel.

· Layout kabel sederhana, pada pemasangan topologi bus rancangan dan skema kabel yang digunakan sangat sederhana sehingga mudah dalam pemasangannya.

· Pengembangan jaringan komputer atau penambahan komputer baru baik sebagai server maupun client dapat dilakukan dengan mudah tanpa mengganggu komputer atau workstation yang lain.


2. Kerugian topologi bus



· Deteksi dan isolasi kesalahan sangat kecil sehingga jika jaringan mengalami gangguan, maka akan lebih sulit untuk mengidentifikasi kesalahan yang ada.

· Kepadatan lalu lintas pada jalur utama, karena topologi bus menggunakan kabel terpusat sebagai media transmisi maka lalu lintas data akan sangat padat pada kabel utama.

· Jika kabel utama mengalami gangguan maka seluruh jaringan akan mengalami gangguan pula.



· Diperlukan repeater sebagai penguat sinyal jika akan menambahkan workstation dengan lokasi yang jauh.

Monday, September 28, 2015

MACAM MACAM REGISTER,VON NEUMAN DAN HARVARD


PENGERTIAN REGISTER
Pengertian Register dan Jenis-jenisnya PENGERTIAN REGISTER Sebuah register adalah sebuah tempat penampungan sementara untuk data-data yang akan diolah oleh prosesor, dan dibentuk oleh 16 titik elektronis di dalam chip mikroprosessor itu sendiri. Dengan adanya tempat-tempat penampungan data sementara ini, proses pengolahan akan bisa dilakukan secara jauh lebih cepat dibandingkan apabila data-data tersebut harus diambil langsung dari lokasi-lokasi memori. Register-register tersebut sebagai register internal dan terdiri dari empat belas register dan keseluruhannya dapat dibagi dalam beberapa jenis, yaitu : Register Segment Terdiri dari 4 register, yaitu Code Segment, Data Segment, Stack Segment, dan Extra Segment. Segment adalah bagian dari ruang memori yang berkapasitas 64 kilobyte (65536 byte) dan digunakan secara spesifik untuk menempatkan jenis-jenis data tertentu. Misalnya code segment digunakan oleh program dan instruksi-instruksi (code), data segment dialokasikan untuk data-data, stack segment dipakai untuk menyediakan ruang untuk stack, yang berfungsi untuk penyimpanan data dan alamat sementara pada saat program utama sedang mengerjakan program percabangan (subroutine, prosedur, dan sebagainya) dan extra segment sebagaimana halnya data segment juga dipergunakan sebagai penempatan data-data. Register Data Register data adalah register yang mengandung informasi yang akan, sedang atau telah diolah oleh komputer. Pada 8088 register ini diwujudkan oleh AX, BX, CX dan BX (sebagai general purpose register), sehubungan dengan fungsinya yang selain menangani tugas-tugas khusus, juga bisa dimanfaatkan untuk membantu proses-proses pengolahan data didalam internal mikroprosessor. Register Index dan Pointer Register jenis pointer dan register index merupakan register-register yang memuat alamat offset dari segment-segment tertentu, yang terdiri dari stack pointer (SP) dan base pointer (BP) yang digunakan sebagai pemegang nilai offset dari stack segment, sedangkan source index (SI) dan destination index (DI) berisi nilai offset dari data segment. Instruction pointer (IP) merupakan pemegang nilai offset dari code segment dan fungsinya mirip dengan program counter (PC) pada prosesor-prosesor 8 bit. Hanya bedanya, program counter langsung mengalamati instruksi-instruksi yang ada dimemori dengan nilainya sendiri, IP harus bekerja sama dengan register CS untuk dapat membentuk pengalamatan 20 bit dalam format segment offset. Register Status Register ini mempunyai struktur yang berbeda dengan register-register lainnya, yang dibentuk dari sebuah register 16 bit, yang masing-masing bitnya memberikan informasi tertentu tentang keadaan-keadaan yang terjadi pada prosesor, sebagai akibat proses pengolahan data Informasi yang diwakili oleh sebuah bit pada register status disebut 'flag'.
TOLONG KLIK TAUTAN DI BAWAH INI :

Arsitektur Komputer Von Neumann



Arsitektur Komputer Von Neumann merupakan arsitektur yang diciptakan oleh Jhon Von Neumann(1903 – 1957). Nama Von Neumann sendiri diambil dari namanya karena dialah yang pertama kali mempublikasikan konsep tersebut (seandainya saya yang duluan pasti namanya akan diambil dari nama saya tentunya), arsitektur komputer ini banyak digunakan di sebagian besar sistem komputer non paralel seperti komputer rumahan atau notebook. Kedepanya model Von Neumann akan digantikan dengan sistem yang mampu mengkoordinasikan banyak CPU untuk bekerja secara serempak seperti komputer yang digunakan oleh NASA.

Superkomputer milik NASA menghubungkan 20 komputer canggih sgi altix, yang masing-masing memiliki 512 prosesor, dilengkapi dengan 500 terabyte media penyimpan (storage) lokal. Sejumlah 10.240 prosesor intel itanium 2 akan mentenagai superkomputer space exploration simulator ini untuk melakukan berbagai penelitian (kalau cuma untuk ngenet sia-sia nih komputer). Okay, back to point. Meski konsep ini dikemukakan oleh Jhon Von Neumann kemudian dikembangkan oleh J. Prespert Eckert(1919 – 1995) dan Jhon William Mauchly(1907 – 1980) dalam pengembangan komputer ENIAC, nama von Neumann lah yang lebih dikenal sebagai penemu arsitektur komputer tersebut.

Arsitektur Von Neumann menggambarkan komputer dengan empat bagian utama yaitu Unit Aritmatika dan Logis (ALU) yang merupakan bagian dari unit kontrol (cpu), media penyimpanan (memory), dan alat masukan (input) dan hasil/keluaran (output) secara kolektif dinamakan I/O.



Berikut penjelasan dari empat komponen tersebut:

1. Masukan (input)

Perangkat ini memiliki fungsi sebagai media untuk memasukkan data ke dalam processor untuk diolah guna menghasilkan informasi yang diperlukan. Input devices atau perangkat masukan yang umumnya digunakan personal computer (PC) adalah keyboard dan mouse, keyboard dan mouse adalah unit yang menghubungkan user (pengguna) dengan komputer. Selain itu terdapat joystick, yang biasa digunakan untuk bermain games atau permainan dengan komputer. Kemudian scanner, untuk memindai gambar agar dapat di olah secara digital. Touch panel, dengan menggunakan sentuhan jari user dapat melakukan suatu proses akses file sebagai pengganti mouse. Microphone, untuk merekam suara ke dalam komputer dan masih banyak lagi.



2. Pemroses (cpu)

CPU atau Central Processing Unit merupakan tempat pemroses dari intruksi-intruksi program, bentuknya berupa chip yang terdiri dari jutaan IC. CPU terdiri dari dua bagian utama yaitu Unit Kendali (control unit) serta Unit Aritmatika dan Logika (ALU). Disamping itu, CPU mempunyai beberapa alat penyimpan yang berukuran kecil yang disebut dengan register.

– Unit Kendali (control unit)

Unit ini bertugas mengatur dan mengendalikan semua peralatan yang ada pada sistem komputer. Unit kendali akan mengatur kapan alat input menerima data dan kapan data diolah serta kapan ditampilkan pada alat output. Tugas dari unit kendali ini adalah :

• Mengatur dan mengendalikan alat-alat input dan output.

• Mengambil instruksi-instruksi dari memori utama.

• Mengambil data dari memori utama (jika diperlukan) untuk diproses.

• Mengirim instruksi ke ALU bila ada perhitungan aritmatika serta mengawasi kerja dari ALU.

• Menyimpan hasil proses ke memori utama.

– Unit Aritmatika dan Logika (ALU)

Tugas utama dari ALU adalah melakukan semua perhitungan aritmatika (matematika) yang terjadi sesuai dengan instruksi program. ALU melakukan operasi aritmatika dengan dasar penjumlahan sehingga sirkuit elektronik yang digunakan disebut adder. Tugas lain dari ALU adalah melakukan keputusan dari suatu operasi logika sesuai dengan instruksi program. Operasi logika meliputi perbandingan dua operand dengan menggunakan operator logika tertentu, yaitu sama dengan (=), tidak sama dengan (<> ), kurang dari (<), kurang atau sama dengan (<= ), lebih besar dari (>), dan lebih besar atau sama dengan (>=).



3. Penyimpanan (memory)

Memory mrupan media penyimpanan data pada Komputer, jenis memory dibagi menjadi dua yaitu.

– RAM (Random Access Memory)

RAM adalah memory utama bagi Komputer yang memegang arahan data yang akan diproses oleh Processor, Ram sendiri bersifat volatile. Artinya data yang disimpan didalamnya akan hilang ketika tidak di aliri arus listrik. Jenis RAM sangat bervariasi, diantaranya :

– DRAM (Dynamic RAM) adalah jenis RAM yang secara berkala harus disegarkan oleh CPU agar data yang terkandung didalamnya tidak hilang.
– SDRAM (Synchronous Dynamic RAM) adalah jenis RAM yang paling umum digunakan pada PC masa sekarang. RAM ini disinkronisasi oleh clock sistem dan memiliki kecepatan lebih tanggi dari pada DRAM.
– SRAM (Statik RAM) adalah jenis memory yang tidak perlu penyegaran oleh CPU agar data yang terdapat didalamnya tetap tersimpan dengan baik. RAM jenis ini memiliki kecepatan lebih tinggi dari pada DRAM.
– RDRAM (Rambus Dynamic RAM)adalah jenis memory yang lebih cepat dan lebih mahal dari pada SDRAM.
– EDORAM (Extended Data Out RAM) adalah jenis memory yang digunakan pada sistem yang menggunakan Pentium.

– DDR (Double Data Rate) tipe RAM yang menggunakan teknologi double clock cycle. DDR sekarang sudah semakin berkembang dengan munculnya DDR2 dan DDR3 yang memiliki kecepatan yang sangat tinggi.

Kedepannya mungkin jenis-jenis RAM akan terus berkembang, karena semakin berkembang pulasistem komputer yang ada saat ini. Sehingga untuk menunjang kebutuhan komputasi yang tinggi dibutuhkan performa komputer yang maksimal.

– ROM (Read Only Memory)

ROM ini sifatnya permanen, artinya program / data yang disimpan didalam ROM ini tidak mudah hilang atau berubah walau aliran listrik di matikan. Proses menyimpan data pada ROM tidak dapat dilakukan dengan mudah, namun membaca data dari ROM dapat dilakukan dengan mudah. Sampai saat ini ada berbagai jenis ROM yang pernah beredar dan terpasang pada komputer, antara lain PROM, EPROM, EAROM, EEPROM, dan Flash Memory. Berikut ini uraian singkat dari masing-masing jenis ROM tersebut.

1. PROM (Programmable Read Only Memory)

2. EPROM (Erasable Programmable Read Only Memory)

3.EEPROM (Electrically Erasable Programmable Read Only Memory)

4. Flash Memory











4. Keluaran (output)

Perangkat output adalah perangkat komputer yang digunakan untuk menampilkan atau menyampaikan informasi kepada penggunanya. Informasi yang ditampilkan oleh komputer merupakan hasil dari pemrosesan yang telah dilakukan oleh komputer. Informasi yang diteruskan oleh komputer melalui perangkat output dapat berupa

tampilan di layar hasil cetakan, suara, dan sebagainya. Perangkat output sangat banyak sekali jenisnya diantaranya.

– Monitor

Monitor merupakan salah satu perangkat keras (Hardware) yang digunakan sebagai penampilan output video dari pada sebuah komputer, dan kegunaannya tersebut tidak dapat dipisahkan dalam pemakaian suatu komputer, sehingga dikarenakan monitor itu sebagai penampilan gambar maka tentunya komputer sangat sulit digunakan dan bahkan sama sekali tidak dapat digunakan tanpa menggunakan komputer (coba aja bayangin facebookan tanpa monitor. hehe..).

– Printer

Printer adalah perangkat Output yang digunakan untuk menghasilkan cetakan dari komputer ke dalam bentuk kertas. Printer dihubungkan dengan komputer melalui USB, selain itu printer juga harus dihubungkan dengan arus listrik namun saat ini ada jenis printer portabel yang menggunakan baterai. Saat pertama kali disambungkan ke komputer, kita harus menginstall software driver printer agar printer itu dapat dikenali oleh komputer. Ketajaman hasil cetakan printer diukur dengan satuan dpi atau dot per inch yaitu banyakknya titik dalam satu inci. Semakin tinggi dpi sebuah printer, maka semakin tajam hasil cetakannya.

– Speaker

Speaker adalah perangkat keras untuk menghsailkan suara. Jenis lain dari speaker adalah headset atau earphone. Kita dapat mendengarkan hasil keluaran berupa suara dari komputer melalui speaker.

– Infocus/Proyektor

Infocus juga merupakan alat ouput, biasanya digunakan untuk presentasi, yang dihubungkan kekomputer untuk menampilkan apa yang ada pada monitor ke suatu screen (layar) ataupun dinding.

– Plotter

Plotter merupakan jenis printer yang dirancang secara khusus guna menghasilkan output komputer yang berupa gambar ataupun grafik. Dengan menghubungkan plotter pada sistem komputer, maka pelbagai bentuk gambar akan dapat disajikan secara prima. Landscape-arsitektur banyak menggunakan plotter guna menghasilkan gambar landscape, potongan pohon, ataupun untuk membantu memvisualisasikan efek dari segala kegiatan yang ada (kalau inget plotter jadi pengen ketawa sendiri, karna punya pengalaman lucu sama nih hardware).

Akhirnya demikian lah tentang arsitektur Von Neumann yang dapat saya jabarkan, semoga bermanfaat.

Terima kasih.\



Mesin Von Neumann

Pada bagian ini kita akan membahas tentang computer Von Numen, yang kita gunakan sehari-hari. Pada dasarnya memang sebagian besar, atau mungkin semua, komputer yang kita kenal adalah Von Neumann machines (mesin Von Neumann), namun beberapa mesin yang dijelaskan pada bagian selanjutnya nanti tidak termasuk. Istilah komputer Von Neumann machine dalam sebagian besar konteks, hanyalah persamaan (sinonim). Kita akan menyebutkan atau mengatakan komputer dengan kata von Neumann machine (mesin von Neumann) jika komputer tersebut memenuhi kriteria berikut :

· Ia mempunyai tiga subsistem hardware dasar :

1. Sebuah CPU

2. Sebuah system memori utama

3. Sebuah system I/O

· Ia merupakan komputer stored-program (program tersimpan). Sistem memori utama menyimpan program yang mengontrol operasinya, dan komputer dapat mengubah programnya sendiri untuk menambah atau mengurangi data lain yang ada di dalam memori.

· Ia merupakan komputer stored-program (program tersimpan). Sistem memori utama menyimpan program yang mengontrol operasinya, dan komputer dapat mengubah programnya sendiri untuk menambah atau mengurangi data lain yang ada di dalam memori.

· Ia menjalankan instruksi secara berurutan. CPU menjalankan,atau setidaknya akan menjalankan,satu operasi dalam sekali waktu.

· Ia mempunyai, atau paling tidak akan mempunyai, satu path antara sistem memori utama dan unit control CPU, hal ini biasanya dinamakan”von Neumann bottleneck.”

Mesin yon Neumann konvensional memberikan satu pathway untuk alarnat dan satu pathway yang kedua untuk data dan instruksi. Harvard architecture termasuk dalam kelompok mesin yon Neumann. Ia sarna dengan komputer konvensional. Bedanya adalah bahwa ia memberikan pathway independen untuk alamat data, data, alamat instruksi, dan instruksi. Harvard architecture (arsitektur Harvard) memungkinkan CPU untuk mengakses instruksi dan data secara serentak.

Komponen utama CPU adalah:

· Control unit (CU), yang mengontrol operasi komputer.

· Arithmetic dan logic unit (ALU), yang menjalankan operasi aritmetik, logika, dan shift untuk menghasilkan sesuatu.

· Register set, yang menyimpan berbagai macam nilai selama operasi komputer.

· Program counter (PC) (kadang-kadang disebut sebagai instruction counter), yang menyimpan alamat memori utarna dari suatu instruksi. PC adalah bagian dari register set (set register).

Cara Kerja Mesin Von Neumann

Kita dapat menganggap mesin Von Neumann sebagai komputer abstraksi yang menjalankan instruction, yaitu nilai dalam memori yang memberitahu computer mengenai operasi yang akan dijalankannya. Setiap instruksi mempunyai set instruction field (field instruksi), yang isinya memberikan detail tertentu untuk mengontrol unit, dan setiap instruksi mempunyai instruction format (format instruksi)-nya sendiri, yang merupakan cara penempatan field dalam memori. Instruction size (ukuran instruksi) adalah jumlah unit memori (biasanya diukur dalam byte) yang digunakan oleh instruksi. Untuk instruksi yang beroperasi pada data (contohnya instruksi aritmetik, logika, shift, karakter dan string), datanya merupakan operand bagi operasi, dan urutan item data tempat beroperasinya CPU adalah data stream. Instruction set dari computer adalah set instruksi yang dapat dijalankan oleh komputer. Setiap komputer mempunyai set instruksi sendiri. Setiap instruksi mempunyai operation code (op code), yaitu kode angka yang biasanya bisa dijumpai pada field pertama dari instruksi, yang memberitahu computer mengenai operasi yang akan dijalankannya. Field instruksi yang lain memberitahu komputer mengenai register yang akan digunakan, jumlah dan jenis data argumen, (misalnya, untuk operasi aritmetik dan logika), dan spesifikasi untuk alamat operand. Instruksi juga memberitahu komputer mengenai bit status prosesor yang akan diuji atau disusun dan mengenai apa yang harns dilakukan terhadapnya jika terjadi kesalahan. (Bit status prosesor, yang juga disebut flag, adalah register I-bit khusus yang ada dalam CPU). Program adalah urutan instruksi yang akan dijalankan komputer. Setiap instruksi mempunyai urutan logis dalam program, yang disebut logical address. Bila program berada dalam memori utama, maka setiap instruksi juga mempunyai physical address.

Langkah kerja Von Nerumann

· Pada waktu mesin von Neumann menjalankan suatu program, maka ia menjalankan instruksi satu per satu secara urut, kecualijika ada satu instruksi yang memberita bukan computer untuk tidak mematuhi urutan tersebut (rnisalnya, instruksi cabang).

· Urutan instruksi yang dijalankan komputer adalah instruction stream.

· Untuk menjaga track instruksi dalam memori, mesin von Neumann menggunakan PC.

· PC ini “pointsto” (menyimpan alamat dari) instruksi berikutnya yang akan dijalankan. Selama operasi biasa, unit control menjalankan urutan dua operasi dasar secara terus menerus: instruction fetch dan instruction execution. Urutan ini dinamakan von Neumann machine cycle. Selama instruction fetch (penjemputan instruksi), unit control menjemput instruksi berikutnya dari memori utama dengan menggunakan alamat yang disimpan dalam PC, dan ia menaikkan PC. Oleh karena itu, setelah penjemputan instruksi, PC menyimpan alamat dari instruksidalam memori yang akan dijalankan CPU berikutnya. Unit kontrol kemudian menjalankan instruksi

pada saat itu, yaitu instruksi yang baru saja dijemput. Selama eksekusi (penjalanan instruksi), CPU pertama kali akan menguraikan kode (decode) instruksi tersebut dan menentukan operasi apa yang akan di jalankan. Ia kemudian menjalankan operasi. Yang terakhir, bila ia telah selesai menjalankan instruksi, ia memulai siklus penjemputan lagi dengan menjemput instruksi berikutnya dari memori. Setiap computer mengimplementasikan setinstruksi. Manual yang menjelaskan set instruksi computer disebut (menurut berbagai perusahaan komputer)” Principles of Operation”, Hardware References”, Architecture References”, dan “System References” .Untuk meningkatkan kecepatan eksekusi, arsitek biasanya menerapkan arsitektur Von Neumann dengan prosesor pipelined. Arsitek juga menggunakan beberapa unit aritmetik untuk meningkatkan kecepatan CPU, dan ia menyertakan buffer (memori berkecepatan tinggi tingkat menengah), agar kecepatan prosesor sesuai dengan kecepatan memori.

Keunggulan Von Neumann

· Mikroprosesor kecepatan telah meningkat dengan faktor 1000 +.

· Program lokalitas.

· Eksploitasi Program lokalitas melalui memori

· Mempunyai hirarki







Kekurangan Von Neuman

Ada kelemahan untuk desain Von Neumann. Selain hambatan Von Neumann dijelaskan di bawah ini, modifikasi program dapat cukup berbahaya, baik oleh kecelakaan atau desain. Dalam beberapa program yang disimpan desain sederhana komputer, sebuah program tidak berfungsi dapat merusak dirinya sendiri, program lain, atau sistem operasi mungkin mengarah kepada kerusakan computer, pelindung memori atau yang lainnya dari kontrol akses biasanya dapat melindungi terhadap kedua disengaja dan modifikasi program berbahaya

Contoh Implementasi Von Neumann

Arthur Burks dan lain-lain di perpanjang karya von Neumann, memberikan banyak dan lebih jelas set lengkap detail mengenai desain dan operasi dari von Neumann diri replikator. Pekerjaan JW Thatcher sangat penting, karena ia sangat disederhanakan desain Namun, pekerjaan mereka tidak menghasilkan desain yang lengkap, sel demi sel, dari konfigurasi yang mampu menunjukkan diri-replikasi.Renato Nobili dan Umberto Pesavento diterbitkan pertama dilaksanakan sepenuhnya mereproduksi dirinya sendiri selular robot pada tahun 1995, hampir lima puluh tahun setelah bekerja von Neumann. Mereka menggunakan 32-negara seluler robot bukan asli von Neumannspesifikasi 29-negara , memperluas untuk memungkinkan lebih mudah menyeberangi sinyal-dan desain lebih kompak. Mereka juga menerbitkan sebuah implementasi konstruktor umum dalam 29-keadaan semula CA tapi tidak salah mampu replikasi lengkap – konfigurasi tidak dapat menduplikasi kaset nya, juga tidak dapat memicu keturunannya; konfigurasi hanya dapat membangun. Pada tahun 2007, diterbitkan Nobili implementasi 32-negara yang menggunakan run-length encoding untuk sangat mengurangi ukuran rekaman itu Pada tahun 2008, William R. Buckley diterbitkan dua konfigurasi yang replikator diri dalam keadaan semula 29-CA dari von Neumann. Buckley mengklaim bahwa persimpangan sinyal dalam von Neumann 29-selular automata negara tidak perlu konstruksi diri-replikator. Buckley juga menunjukkan bahwa untuk tujuan evolusi, replikator masing-masing harus kembali ke konfigurasi semula setelah replikasi, agar mampu (dalam teori) membuat lebih dari satu salinan. Sebagai diterbitkan, desain tahun 1995 Nobili-Pesavento tidak memenuhi persyaratan ini tetapi desain 2007 dari Nobili tidak; yang sama juga berlaku konfigurasi Buckley. Pada tahun 2004, D. Mange dkk, elaporkan pelaksanaan replikator diri yang konsisten dengan desain dari von Neumann. Pada tahun 2009, diterbitkan dengan Buckley Waduh konfigurasi ketiga untuk von Neumann 29- negara otomata selular, yang dapat melakukan baik holistik self-replikasi, atau self-replikasi oleh konstruksi parsial. This configuration also demonstrates that signal crossing is not necessary to the construction of self-replicators within von Neumann 29-state cellular automata. Konfigurasi ini juga menunjukkan bahwa persimpangan sinyal tidak diperlukan untuk pembangunan diri replikator dalam von Neumann 29-negara selular automata. CL Nehaniv pada tahun 2002, dan juga pada tahun 2004, mengusulkan sebuah konstruktor yang universal langsung diimplementasikan pada sebuah robot seluler asynchronous, bukan atas sinkron otomat seluler.


Kontras dengan arsitektur von Neumann

Dalam murni arsitektur von Neumann yang CPU dapat berupa membaca instruksi atau data membaca / menulis dari / ke memori. Keduanya tidak dapat terjadi pada saat yang sama sejak instruksi dan data menggunakan sistem bus yang sama. Dalam komputer menggunakan arsitektur Harvard, CPU dapat baik membaca instruksi dan melakukan akses data memori pada saat yang sama, bahkan tanpa cache. Sebuah arsitektur komputer Harvard sehingga bisa lebih cepat untuk kompleksitas rangkaian diberikan karena instruksi menjemput dan akses data tidak bersaing untuk memori jalur tunggal.

Juga, mesin arsitektur Harvard memiliki kode dan data alamat ruang yang berbeda: Alamat instruksi nol tidak sama dengan data alamat nol. Alamat Instruksi nol mungkin mengidentifikasi nilai dua puluh empat bit, sedangkan data alamat nol mungkin menunjukkan byte delapan bit yang bukan bagian dari itu nilai dua puluh empat bit.


Arsitektur Harvard





Arsitektur Harvard adalah arsitektur komputer dengan fisik terpisahpenyimpanan dan sinyal jalur untuk instruksi dan data. Istilah ini berasal dari Harvard Mark I komputer berbasis relay, yang disimpan petunjuk pada pita menekan (24 bit lebar) dan data dalam counter elektro-mekanis. Mesin-mesin awal memiliki penyimpanan data seluruhnya terkandung dalam central processing unit , dan tidak memberikan akses ke penyimpanan instruksi sebagai data. Program perlu dimuat oleh operator; prosesor tidak bisa booting sendiri.

Saat ini, sebagian besar prosesor menerapkan jalur sinyal yang terpisah tersebut untuk alasan kinerja tetapi sebenarnya menerapkan arsitektur Harvard dimodifikasi , sehingga mereka dapat mendukung tugas-tugas seperti memuat program dari penyimpanan disk sebagai data dan kemudian dijalankan.
Rincian memori

Dalam arsitektur Harvard, tidak perlu untuk membuat dua memori berbagi karakteristik. Secara khusus, kata lebar, waktu, penerapan teknologi, dan alamat memori struktur bisa berbeda. Dalam beberapa sistem, instruksi dapat disimpan dalam read-only memory sementara memori data umumnya memerlukan baca-tulis memori . Dalam beberapa sistem, ada lebih banyak memori instruksi dari memori data sehingga alamat instruksi yang lebih lebar dari alamat data.
Kontras dengan modifikasi Harvard arsitektur

Arsitektur Harvard diubah mesin sangat banyak seperti mesin arsitektur Harvard, tetapi melemaskan pemisahan yang ketat antara instruksi dan data sementara masih membiarkan CPU secara bersamaan mengakses dua (atau lebih) bus memori. Modifikasi yang paling umum termasuk terpisah instruksi dan data cache yang didukung oleh address space yang sama. Sementara CPU mengeksekusi dari cache, ia bertindak sebagai mesin Harvard murni. Ketika mengakses memori dukungan, itu bertindak seperti mesin von Neumann (di mana kode dapat dipindahkan sekitar seperti data, yang merupakan teknik yang kuat). Modifikasi ini tersebar luas di prosesor modern seperti arsitektur ARM dan x86 prosesor. Kadang-kadang longgar disebut arsitektur Harvard, mengabaikan fakta bahwa itu benar-benar "diubah".

Modifikasi lainnya menyediakan jalur antara memori instruksi (seperti ROM atau flash) dan CPU untuk memungkinkan kata-kata dari memori instruksi harus diperlakukan sebagai read-only data. Teknik ini digunakan dalam beberapa mikrokontroler, termasuk Atmel AVR . Hal ini memungkinkan data konstan, seperti string teks atau tabel fungsi, untuk diakses tanpa terlebih dahulu harus disalin ke dalam memori data, melestarikan langka (dan haus kekuasaan) memori data untuk membaca / menulis variabel. Khusus instruksi bahasa mesin yang tersedia untuk membaca data dari memori instruksi. (Ini berbeda dari instruksi yang sendiri menanamkan data konstan, meskipun untuk konstanta individu dua mekanisme dapat menggantikan satu sama lain.)

Kecepatan

Dalam beberapa tahun terakhir, kecepatan CPU telah tumbuh berkali-kali dibandingkan dengan kecepatan akses memori utama. Perawatan harus diambil untuk mengurangi jumlah kali memori utama diakses untuk mempertahankan kinerja. Jika, misalnya, setiap instruksi dijalankan dalam CPU memerlukan akses ke memori, keuntungan komputer tidak untuk meningkatkan kecepatan CPU-masalah disebut sebagai "memori terikat".

Hal ini dimungkinkan untuk membuat memori yang sangat cepat tapi ini hanya praktis untuk sejumlah kecil memori untuk biaya, tenaga dan routing sinyal alasan. Solusinya adalah untuk menyediakan sejumlah kecil memori yang sangat cepat yang dikenal sebagai CPU cache yang menyimpan data yang baru diakses. Selama data yang perlu CPU dalam cache, kinerja yang jauh lebih tinggi daripada ketika cache harus mendapatkan data dari memori utama.
Internal vs eksternal desain

Kinerja tinggi desain chip CPU modern menggabungkan aspek kedua Harvard dan arsitektur von Neumann. Secara khusus, "tembolok split" versiarsitektur Harvard termodifikasi sangat umum. CPU memori cache dibagi menjadi cache instruksi dan data cache. Arsitektur Harvard digunakan sebagai CPU mengakses cache. Dalam kasus cache miss, bagaimanapun, data diambil dari memori utama, yang tidak secara resmi dibagi menjadi beberapa bagian instruksi dan data terpisah, meskipun mungkin memiliki kontroler memori yang terpisah digunakan untuk akses bersamaan ke RAM, ROM dan (NOR ) memori flash.

Jadi, sementara arsitektur von Neumann terlihat dalam beberapa konteks, seperti ketika data dan kode datang melalui memory controller yang sama, implementasi hardware keuntungan efisiensi dari arsitektur Harvard cache mengakses dan setidaknya beberapa memori akses utama.

Selain itu, CPU sering memiliki write buffer yang memungkinkan CPU melanjutkan setelah menulis ke daerah non-cache. The von Neumann sifat memori kemudian terlihat ketika instruksi ditulis sebagai data oleh CPU dan perangkat lunak harus memastikan bahwa cache (data dan instruksi) dan menulis penyangga disinkronisasi sebelum mencoba untuk menjalankan instruksi tersebut hanya ditulis.
Penggunaan modern dari arsitektur Harvard

Keuntungan utama dari Harvard murni Akses arsitektur-simultan lebih dari satu memori sistem-telah dikurangi oleh prosesor Harvard dimodifikasi menggunakan moderen cache CPU sistem. Relatif murni Harvard mesin arsitektur digunakan terutama dalam aplikasi di mana pengorbanan, seperti penghematan biaya dan tenaga dari menghilangkan cache, melebihi hukuman pemrograman dari menampilkan kode dan data alamat ruang yang berbeda.

Prosesor sinyal digital (DSP) umumnya mengeksekusi kecil, audio atau video algoritma pengolahan yang sangat optimal. Mereka menghindari cache karena perilaku mereka harus sangat direproduksi. Kesulitan mengatasi beberapa ruang alamat menjadi perhatian sekunder untuk kecepatan eksekusi. Akibatnya, beberapa DSP memiliki beberapa kenangan data dalam ruang alamat yang berbeda untuk memfasilitasi SIMD dan VLIW pengolahan. Texas Instruments TMS320 prosesor C55x, untuk satu contoh, memiliki beberapa bus data paralel (dua menulis, membaca tiga) dan satu instruksi bus.

Mikrokontroler ditandai dengan memiliki sejumlah kecil program ( flash memory ) dan data ( SRAM ) memori, tanpa cache, dan mengambil keuntungan dari arsitektur Harvard untuk kecepatan pemrosesan instruksi oleh bersamaan dan akses data. Penyimpanan terpisah berarti program dan kenangan data mungkin memiliki lebar bit yang berbeda, misalnya menggunakan 16-bit instruksi lebar dan 8-bit data yang lebar. Mereka juga berarti bahwa instruksi prefetch dapat dilakukan secara paralel dengan kegiatan lain. Contohnya termasuk, yang AVR oleh Atmel Corp dan PIC oleh Microchip Technology, Inc .

Bahkan dalam kasus ini, itu adalah umum untuk menggunakan instruksi khusus untuk memori program akses seolah-olah itu data untuk tabel-hanya membaca, atau untuk pemrograman ulang; prosesor tersebut yang dimodifikasi arsitektur Harvardprosesor.





Sumber : http://sorecokta.blogspot.com/2008/04/perbedaan-memory-register-dan-cache.htm
http://wikipedia.com

Tuesday, September 22, 2015

MACAM MACAM MEMORY




Random Access Memory (RAM)
RAM adalah memori dalam sistem komputer yang berguna untuk menampung data sementara dan mengirimnya kembali untuk segera diakses dan diproses oleh prosesor.Karena kecepatan prosesor lebih tinggi dari kecepatan hardisk,maka diperlukan RAM untuk menyeimbangkan data keluar masuk dari hardisk. Informasi yang disimpan dalam RAM diambil dari hard disk komputer, termasuk data yang berhubungan dengan sistem operasi dan aplikasi tertentu. Ketika komputer dimatikan, memori yang tersimpan pada RAM akan hilang. Data akan disimpan dan hanya  dipertahankan disaat komputer sedang berjalan.

Ketika memori RAM sudah penuh,kinerja atau kecepatan komputer akan semakin lambat. Data yang dapat diambil dalam urutan yang acak.
Secara umum ada dua jenis RAM, yaitu Static RAM (SRAM) dan Dynamic RAM (DRAM). Ketika banyak program pada komputer yang dijalankan secara bersamaan, virtual memori memungkinkan komputer untuk mencari pada bagian memori  RAM yang belum digunakan terakhir kemudian menyalinnya ke hard disk. Tindakan seperti ini akan membebaskan ruang RAM, dan memungkinkan sistem untuk menjalankan program yang berbeda.

Read Only Memory (ROM)
ROM adalah Jenis memori aktif,walaupun komputer dihidupkan atau dimatikan. Sesuai dengan sebutanya 'read only', isi di dalam ROM tidak dapat dirubah atau dimodifikasi. ROM merupakan sirkuit terpadu sebelum diprogram dengan data penting, yang harus selalu ada untuk komputer dalam melaksanakan fungsi normal.

Cache
Cache adalah jenis RAM pada sistem komputer yang lebih responsif daripada RAM biasa. CPU akan memeriksa dulu didalam memori cache sebelum mencari di penyimpanan pada memori pusat untuk menentukan suatu informasi yang diperlukan. Hal ini untuk keperluan dari sistem komputer untuk mencari informasi pada memori penyimpanan yang lebih besar, sehingga ekstraksi data menjadi lebih cepat.

Hardisk
Hardisk/ Hardrive  adalah hardware yang berguna sebagai tempat penyimpanan data penting yang dipasang didalam Komputer. kapasitas Memori dari hardisk lebih besar, dan pengguna bisa memilih data yang perlu disimpan kedalam memori ataupun diakses dari memori. Saat ini hard disk yang banyak digunakan memiliki kapasitas memori penyimpanan sebesar 120 GB hingga 500 GB.

Flash Disk
Flash Disk adalah jenis memori penyimpanan portabel yang bisa digunakan dengan nyaman jika transfer data dari satu komputer ke komputer lain. Data di dalamnya dapat dihapus dan diprogram ulang sesuai kebutuhan pengguna. Kartu memori USB/ flash disk adalah beberapa model dari jenis memori penyimpanan komputer.

Diatas adalah beberapa jenis memori yang secara umum digunakan untuk memfasilitasi komputer dan tempat penyimpanan data. Namun masih banyak subtipe dari jenis jenis memori yang jika diurutkan akan sesuai dengan fungsi dan persyaratan yang dilayani.
Read Only Memory (ROM)
Read-only Memory(ROM) adalah istilah untuk media penyimpanan data pada komputer. ROM ini adalah salah satu memori yang ada dalam computer. ROM ini sifatnya permanen, artinya program / data yang disimpan di dalam ROM ini tidak mudah hilang atau berubah walau aliran listrik di matikan.Contohnya adalah switch mekanis.



 Jenis – jenis ROM
Beberapa jenis ROM yang pernah beredar dan terpasang pada komputer, antara lain
·           PROM (Progammable Read-Only-Memory)
·           EPROM (Erasable Programmable Read-Only-Memory)
·           EEPROM (Electrically Erasable Programmable Read-Only Memory)
  PROM (Progammable Read-Only-Memory)
Jika isi ROM ditentukan oleh vendor, PROM dijual dalam keadaan kosong dan kemudian dapat diisi dengan program oleh pemakai. Setelah diisi dengan program, isi PROM tak bisa dihapus.
 EPROM (Erasable Programmable Read-Only-Memory)
Isi EPROM dapat dihapus setelah diprogram. Penghapusan dilakukan dengan menggunakan sinar ultraviolet.
EEPROM (Electrically Erasable Programmable Read-Only Memory)
EEPROM dapat menyimpan data secara permanen, tetapi isinya masih bisa dihapus secara elektris melalui program. Salah satu jenis EEPROM adalah Flash Memory. Flash Memory biasa digunakan pada kamera digital, konsol video game, dan cip BIOS.
Jenis – jenis RAM
·         DRAM (Dynamic RAM)
·         SDRAM (Sychronous Dynamic RAM)
·         RDRAM (Rambus Dynamic RAM)
·         SRAM (Static RAM)
·         EDO RAM (Extended Data Out RAM)
·         FPM DRAM (First Page Mode DRAM)
·         Flash RAM

DRAM (Dynamic RAM)
Jenis RAM yang secara berkala harus disegarkan oleh CPU agar data yang terkandung didalamnya tidak hilang.
SDRAM (Sychronous Dynamic RAM)
SDRAM (Sychronous Dynamic RAM) adalah jenis RAM yang merupakan kelanjutan dari DRAM namun telah diskronisasi oleh clock sistem dan memiliki kecepatan lebih tinggi daripada DRAM. Cocok untuk sistem dengan bus yang memiliki kecepatan sampai 100 MHz
RDRAM (Rambus Dynamic RAM)
RDRAM (Rambus Dynamic RAM) adalah jenis memory yang lebih cepat dan lebih mahal dari pada SDRAM.
SRAM (Static RAM)
SRAM (Static RAM) adalah jenis memori yang tidak memerlukan penyegaran oleh CPU agar data yang terdapat di dalamnya tetap tersimpan dengan baik. RAM jenis ini memiliki kecepatan lebih tinggi daripada DRAM. SDRAM
EDO RAM (Extended Data Out RAM)
EDO RAM (Extended Data Out RAM) adalah jenis memori yang digunakan pada sistem yang menggunakan Pentium. Cocok untuk yang memiliki bus denagan kecepatan sampai 66 MHz.
FPM DRAM (First Page Mode DRAM)
FPM DRAM (First Page Mode DRAM) adalah merupakan bentuk asli dari DRAM. Laju transfer maksimum untuk cache L2 mendekati 176 MB per sekon.
Flash RAM
Flash RAM adalah jenis memory berkapasitas rendah yang digunakan pada perngkat elektronika seperti, TV, VCR, radio mobil, dan lainnya. Memerlukan refresh dengan daya yang sangat kecil.